
How to Teach
Complex Ideas

$ whoami

[leo@archlinux .emacs.d]$ groups

 Human
 Teacher
 Computer Scientist
 Security Consultant and Trainer

$ whoami - work
Software Security Consultant and Trainer

$ whoami - personal

● Esadecimale

https://www.youtube.com/@esadecimale/videos

● Hexdump

https://www.youtube.com/@hexdump/videos

$ whoami - personal

What I like doing:

● Find a “cool” idea
● Study it
● Implement a simple PoC
● Teach Others

How to Teach
Complex Ideas

Bleichenbacher
Padding Oracle Attack

1 + 1 = 0

0x00 - Connections

On Teaching - Connections

Where is the meaning?

Meaning is driven by
connections to things we

already know

Connections
To protect e-commerce digital communications, in
1995 the Netscape released

 SSL – Secure Socket Layer

Connections

Connections
SSL is a network protocol designed to offer
cryptographic services.

● Confidentiality
● Integrity
● Mutual Authentication
● …

Connections

In 1999 SSL was standardized by the IETF.

 SSL TLS
● SSL -> Secure Socket Layer
● IETF -> Internet Engineering Task Force
● TLS -> Transport Layer Security

Connections
Over the years new versions of TLS were developed.

Connections
Over the years various vulnerabilities have been
discovered within the SSL/TLS stack.

Connections
Classes of SSL/TLS Vulnerabilities:

● Design
○ Insecure Renegotiation

● Implementation
○ Heartbleed
○ Early CCS

● Cryptography Usage
○ CBC Padding Oracle
○ BEAST Attack

Connections
Classes of SSL/TLS Vulnerabilities:

● Design
○ Insecure Renegotiation

● Implementation
○ Heartbleed
○ Early CCS

● Cryptography Usage
○ CBC Padding Oracle
○ BEAST Attack

Let us focus on
these ones!

Connections
Let us focus on the cryptographic attack known as

Bleichenbacher’s Oracle Attack
also known as

The Million Message Attack

Connections
Discovered in 1998 by Daniel Bleichenbacher.

Connections
It has resurfaced multiple times over the years.

Connections
In 2018, Hanno Böck, Juraj Somorovsky and Craig Young used a
version of this attack to use facebook’s private key!

Connections
It has resurfaced multiple times over the years.

0x01 - Context

On Teaching - Context

A well-defined
context allows to the
mind to reach the
correct meaning with
less effort.

Context
Main ideas behind the TLS protocol

TLS Handshake
○ Key Exchange
○ Authentication

TLS Session
○ Confidentiality
○ Integrity

Context - TLS Handshake

● Exchange of Capabilities
● Authentication (Public Key Infrastructure)
● Key Exchange

○ RSA
○ DHE
○ ECDHE

Context - TLS Handshake

Client
Server

ServerHello

ClientKeyExchange , Finished

Finished

ClientHello

Context - TLS Handshake
The attack can be applied only when RSA is used to
encrypt the ClientKeyExchange message.

RFC 5246
TLS v1.2

Context
The Bleichenbacher's Oracle Attack is an

Adaptive
Chosen Ciphertext

Attack

Context
Adaptive Chosen Ciphertext Attack

● Adaptive: the attack has various phases, where
each phase depends on the outcome of the
previous.

● Chosen Ciphertext: the attack works by
constructing specific ciphertext messages.

Context
It allows an attacker to
forcefully decrypt an encrypted message.

* no need to know the private key of the server.

Context
The attack scenario on TLS

1. Sniff encrypted handshake + session.

2. Use padding oracle oracle to decrypt shared
symmetric key.

3. Decrypt entire TLS session.

Context

RFC 8446
TLS v1.3

In the latest version (TLS v1.3), the RSA key
exchange option has been removed.

0x02 - Pre-Requisites

You cannot
teach it all

Pre-Requisites
To fully understand the attack we need

● RSA Encryption
● PKCS #1 v1.5 Padding Scheme
● Padding Oracle

RSA

RSA

Public-key cryptography scheme used to:

● Encrypt messages (confidentiality)
● Sign messages (integrity, authenticity)

RSA

In RSA, messages are numbers

Hello World -> 2342312312333…
This is a secret! -> 7192391239112…
Lisp is cool btw -> 5123123123123…

RSA
Modular Arithmetic

 9 + 9 mod 12 = 6
 7 + 7 mod 12 = 2
 1 + 6 mod 12 = 7

RSA
Encryption Computation

Public key

RSA
Decryption Computation

Private key

PKCS #1 v1.5

PKCS #1 v1.5
Textbook RSA is completely deterministic

t1:This is a secret! -> 719239123911…
t2:This is a secret! -> 719239123911…

We lose semantic security!

PKCS #1 v1.5
In 1993 the scheme PKCS #1 v1.5 was standardized.

PKCS #1 v1.5

The rules of PKCS #1 v1.5

*k = byte length of modulus N

PKCS #1 v1.5
def pkcs(msg):
 padded_msg = b""
 random_len = K - len(msg) - 3

 if random_len < 8:
 print(f"[ERROR] - Message is too long for given K")
 exit()

 padded_msg += b"\x00" + b"\x02"
 padded_msg += secrets.token_bytes(random_len)
 padded_msg += b"\x00"
 padded_msg += msg.encode()

 return padded_msg

In code

Padding Oracles

Padding Oracles

An oracle is a black box that can
answer a specific question.

Padding Oracles

A padding oracle answers questions related to the
padding of messages.

Padding Oracles

Example

m1 -> 0x 00 02 4A 20 FA BC …

m2 -> 0x 05 FF 02 03 04 05 …

Padding Oracles

Example

m1 -> 0x 00 02 4A 20 FA BC …

m2 -> 0x 05 FF 02 03 04 05 …

Padding OK

Padding WRONG

Padding Oracles
def oracle(msg_hex):
 global D, N

 # transform hex into number
 encrypted_msg = int("0x" + msg_hex, 0)

 # raw decrypt using RSA
 decrypted_msg = pow(encrypted_msg, D, N)
 decrypted_hex = f"%0{PADDING_VALUE}x" % decrypted_msg

 # check for padding
 if decrypted_hex[0:4] != "0002":
 return False
 else:
 return True

In code

Padding Oracles

Padding is checked on plaintext!

0x04 - Details

On Teaching - Details

Abstractions Details

Inputs
● RSA Public Key of Server
● Encrypted message
● Exposed PKCS Oracle

Output
● Decrypted message

Objective
Find the original message m.

Consequences of
RSA

Consequences of RSA

The laws of exponents in algebra states that

Consequences of RSA

In RSA encryption is implemented with
exponentiation.

Attacker PoV Server PoV

Attacker PoV Server PoV

Attacker PoV Server PoV

Attacker PoV Server PoV

Attacker PoV Server PoV

Consequences of
PKCS#1 v1.5

Consequences of PKCS #1 v1.5

Remember the rules of PKCS #1 v1.5

Consequences of PKCS #1 v1.5

Remember the rules of PKCS #1 v1.5

Valid messages start with 0x 00 02!

Consequences of PKCS #1 v1.5

 0x 00 02 00 00 00 00 …
 …
m -> 0x 00 02 02 03 04 05 …
 …
 0x 00 02 FF FF FF FF …

Consequences of PKCS #1 v1.5

If m is properly padded,
we have a numerical bound on the plaintext!

KEY_BIT_SIZE = 1024
B = 2 ** (8 * (KEY_BYTE_SIZE - 2))
B2, B3 = 2*B, 3*B

Consequences of PKCS #1 v1.5

If m is properly padded,
we have a numerical bound on the plaintext!

Consequences of PKCS #1 v1.5
Before knowledge of valid PKCS padding

After knowledge of valid PKCS padding

Decryption Algorithm

Decryption Algorithm

The decryption algorithm works in phases.

Each phase
computes a set of intervals
that contain the plaintext.

Decryption Algorithm

Decryption Algorithm
In the last phase we have a single valid
interval that contains a single number.

This remaining number is the decrypted plaintext!

Decryption Algorithm

Each phase has two steps

● Step 1: Find a number

● Step 2: Construct a set of intervals

Decryption Algorithm - Initialization

Initialization

Decryption Algorithm - Step 1

The first step finds a value such that

is PKCS#1 v1.5 compliant.

Decryption Algorithm - Step 1

The attacker sends the modified ciphertext

The server will decrypt and check the padding

Decryption Algorithm - Step 1

Client
Server

WRONG PADDING!

s = 2

WRONG PADDING!

s = 3

GOOD PADDING!

s = 4

Decryption Algorithm - Step 1

Step 2

Padding OK Padding WRONG

Client

Server

Decryption Algorithm - Step 1
def bb_step_1(s):
 global E, N, c
 s = s + 1
 while True:
 new_c = (s^E * c) mod N
 if oracle(new_c):
 return s
 s = s + 1

Decryption Algorithm - Step 2

The second step constructs a set of intervals
that includes the original plaintext.

Decryption Algorithm - Step 2
Formulas are formal, but not intuitive.

Decryption Algorithm - Phase 2

Images can help

Decryption Algorithm - Step 2

Decryption Algorithm - Step 2
def bb_step_2(s, old_M):
 new_M = set([])
 for (a, b) in old_M:
 r1 = ceil((a * s - B3 + 1), N)
 r2 = floor((b * s - B2), N) + 1
 for r in range(r1, r2):
 aa = ceil(B2 + r*N, s)
 bb = floor(B3 - 1 + r*N, s)
 newa = max(a, aa)
 newb = min(b, bb)
 if newa <= newb:
 new_M |= set([(newa, newb)])
 return new_M

Decryption Algorithm - Full Code

Decryption Algorithm
The bottleneck is in the phase 1.

Client
Server

WRONG PADDING!
s = 2

WRONG PADDING!
s = 3

GOOD PADDING!
s = 4

Decryption Algorithm
How many phases?

Decryption Algorithm
Over the years,
optimizations techniques were discovered.

● Tiger Bounds
● Beta Method
● Parallel Threads Methods
● Skipping Holes
● Trimmers

Decryption Algorithm
What I did not cover (for time):

● Blinding step
● Optimized search for next s
● …

0x05 - Practice

Practice
Develop a safe
environment
to try the ideas
of the lecture
against reality.

Practice Reality is Brutal.

● *but rewarding (sometimes)

Practice

Host: bb.esadecimale.it
Port: 1337
Description: Ask, and I shall answer.

nc bb.esadecimale.it 1337

Practice
CVE-2016-0704,
CVE-2016-0800
CVE-2017-6168,
CVE-2017-17305
CVE-2018-16868
CVE-2019-1563

CVE-2023-46809
…

0x06 - Takeaways

Takeways

DO NOT USE RSA WITH PKCS#1 V1.5!

If you want to learn applied crypto

● https://cryptohack.org/
● https://cryptopals.com/

\

0xFF - References

Research Literature
● Original Bleichenbacher (CRYPTO 1998)
● Klima et al. (CHES 2003)
● Bleichenbacher’s Attack Strikes Again: Breaking PKCS#1 v1.5 in XML Encryption (ESORICS 2012)
● Efficient Padding Oracle Attacks on Cryptographic Hardware (CRYPTO 2012)
● Revisiting SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks (USENIX 2014)
● Return Of Bleichenbacher's Oracle Threat (USENIX 2018)
● The Dangers of Key Reuse: Practical Attacks on IPsec IKE (USENIX 2018)
● The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations (2019)
● Marvin Attack (Timing sidechannels 2023)

References
● Platforms

○ https://cryptohack.org/
○ https://cryptopals.com/

● Tooling
○ https://testssl.sh/
○ https://github.com/tlsfuzzer/tlsfuzzer
○ https://github.com/tls-attacker/TLS-Attacker

● Reading
○ https://blog.leonardotamiano.xyz/tech/bleichenbacher-oracle/
○ https://leonardotamiano.xyz/thesis.pdf
○ https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/

appliedcrypto/education/theses/bachelors-thesis_livia-capol.pdf

forum.esadecimale.it

Q?

Thanks!

