MINDED
SECURITY

m,

How to Teach
Complex Ideas

toward

[leo@archlinux .emacs.d]S groups

Human

Teacher

Computer Scientist

Security Consultant and Trainer

S whoami - work

Software Security Consultant and Trainer

MINDED
SECURITY

S whoami - personal

e Esadecimale

hitps://www.youtube.com/@esadecimale/videos

e Hexdump

hitps://www.youtube.com/@hexdump/videos

S whoami - personal

What | like doing:

Find a “cool” idea

Study it

Implement a simple PoC
Teach Others

How 1o Teach
Complex Ideas

PRACTICE

DIFFICULTY DETAILS

PRE-
REQUISITES

CONNECTIONS
CONTEXT

TIME

Bleichenbacher
Padding Oracle Attack

1+1=0

0x00 - Connections

On Teaching - Connections

Where is the meaning?

Meaning is driven by
connections to things we
already know

Connections

To protect e-commerce digital communications, in
1995 the Netscape released

SSL - Secure Socket Layer

IS Netscape

Connections

Connections

SSL is a network protocol designed to offer
cryptographic services.

Confidentiality
Integrity
Mutual Authentication

Connections

In 1999 SSL was standardized by the IETF.

SSL — TLS

e SSL ->Secure Socket Layer
e |ETF-> Internet Engineering Task Force
e TLS ->Transport Layer Security

Connections
Over the years new versions of TLS were developed.

TLS V.2 TLS Vi3
(RFC 5246) (RFC 84946)

TS VvI.0 TLS Vi
(RFC 2246) (RFC 4346)

SSLv3
(RFC 6101)

SSLv2

| Tronsport L.ou_/e,r Security T wmeline
1995 1996 1999 2006 2004 201%

Connections

Over the years various vulnerabilities have been
discovered within the SSL/TLS stack.

Connections
Classes of SSL/TLS Vulnerabilities:

e Design
o Insecure Renegotiation
e Implementation
o Heartbleed
o Early CCS
e Cryptography Usage
o CBC Padding Oracle
o BEAST Attack

Connections
Classes of SSL/TLS Vulnerabilities:

e Design

o Insecure Renegotiation Let us focus on
e Implementation these onesl!

o Heartbleed

o Early CCS

e Cryptography Usage
o CBC Padding Oracle
o BEAST Atftack

Connections
Let us focus on the cryptographic attack known as

Bleichenbacher’s Oracle Attack

also known Qs

The Million Message Attack

Connections
Discovered in 1998 by Daniel Bleichenbacher.

Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard
PKCS #1

Daniel Bleichenbacher

Bell Laboratories
700 Mountain Ave., Murray Hill, NJ 07974
bleichen@research.bell-labs.com

Connections
It has resurfaced multiple times over the years.

‘ Published Research

_\ RFC Updo\'te,
ROBOT
TLS 1.3
TLS 1.0 TLS 11 TLS 1.1‘ DROWN (.

)
- - \\\\ N P \\\
\ | { | i
4 \\‘ J/ N ,v_v,/‘,

Bleichenbacher's Oracle, Timeline

199¢ 1999 2003 2006 200% 2012 2014 2016 201 2019

Connections

In 2018, Hanno Bock, Juraj Somorovsky and Craig Young used a
version of this attack to use facebook’s private key!

Can you actually prove that Facebook was
vulnerable?

We were able to sign a test message with Facebook's private key.

You don't have to take our word for it; we have cryptographic proof. Just use

these commands:

Connections
It has resurfaced multiple times over the years.

Windows into the Past: Exploiting Legacy Crypto
in Modern OS’s Kerberos Implementation

Michal Shagam and Eyal Ronen, Tel Aviv University

https://www.usenix.org/conference/usenixsecurity24/presentation/shagam

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

0x01 - Context

On Teaching - Context

i

A well-defined
context allows to the
mind to reach the
correct meaning with
less effort.

[KEEP
-

RIGHT

Context
Main ideas behind the TLS protocol

TLS Handshake TLS Session

o Key Exchange o Confidenftiality
o Authentication o Integrity

Context - TLS Handshake

e Exchange of Capabilities
e Avuthentication (Public Key Infrastructure)
e Key Exchange

o RSA

o DHE

o ECDHE

Context - TLS Handshake

ClientHello
>
ServerHello
%)
Client ClientKeyExchange|, Finished >

Server

Finished

Context - TLS Handshake

The attack can be applied only when RSA is used to
encrypt the ClientKeyExchange message.

struct {
select (KeyExchangeAlgoIithm) {
case rsa:
EncryptedPreMasterSecret; RFC 5246
case dhe_dss. TLS v1.2

case dhe_xrsa:

case dh_dss:

case dh_rsa:

case dh_anon:
ClientDiffieHellmanPublic;

} exchange_keys;

} ClientKeyExchange;

Contexi

The Bleichenbacher's Oracle Attack is an

Adaptive
Chosen Ciphertext
Attack

Context
Adaptive Chosen Ciphertext Attack

e Adaptive: the attack has various phases, where
each phase depends on the outcome of the
previous.

e Chosen Ciphertext: the attack works by
constructing specific ciphertext messages.

Contexi

It allows an attacker to
forcefully decrypt an encrypted message.

C—> M

* no need to know the private key of the server.

Contexi

The attack scenario on TLS
1. Sniff encrypted handshake + session.

2. Use padding oracle oracle to decrypt shared
symmetric key.

3. Decrypt entire TLS session.

Contexi

In the latest version (TLS v1.3), the RSA key
exchange opftion has been removed.

RFC 8446
TLS v1.3

0x02 - Pre-Requisites

You cannot
teach it all

Pre-Requisites
To fully understand the attack we need

e RSA Encryption
e PKCS #1 v1.5 Padding Scheme

e Padding Oracle

RSA

RSA
Public-key cryptography scheme used to:

e Encrypt messages (confidentiality)
e Signh messages (integrity, authenticity)

RSA

In RSA, messages are numbers

Hello World -> 2342312312333...
This is a secret! -> 7192391239112..
Lisp is cool btw -> 5123123123123..

RSA

Modular Arithmetic

O + 9O mod 12 = 6
/7 + 7 mod 12 = 2
1T + 6 mod 12 = 7/

RSA
Encryption Computation

C — me\%]\f

Public key

RSA
Decryption Computation

m:c% mod N

Private key

PKCS #1 v1.5

PKCS #1 v1.5

Textbook RSA is completely deterministic

t1:This 1s a secret! -> 719239123911..
t2:This is a secret! -> 719239123911..

we lose S€mantic security:!

PKCS #1 v1.5
In 1993 the scheme PKCS #1 v1.5 was standardized.

Obsoleted by: 2437 INFORMATIONAL
Network Working Group B. Kaliski
Request for Comments: 2313 RSA Laboratories East
Category: Informational March 1998

PKCS #1: RSA Encryption
Version 1.5 N

PKCS #1 v1.5
The rules of PKCS #1 v1.5

0x0002 | R ... R; | 00| M, ... M,
N—— ——

N e’
>8 <k—11

*k = byte length of modulus N

PKCS #1 v1.5

def pkcs(msg):
padded_msg
random_len

b"" In code
K - len(msg) - 3

if random_len < 8:
print(f"[ERROR] - Message is too long for given K")
exit()

padded_msg += b"\x00" + b"\x02"

padded_msg += secrets.token_bytes(random_len)
padded_msg += b"\x00"

padded_msg += msg.encode()

return padded_msg

Padding Oracles

Padding Oracles

An oracle is a black box that can
answer a specific question.

?7 W

’ - False

True

Padding Oracles

A padding oracle answers questions related o the
padding of messages.

"
R

’\ Padding NOT OK

P O\AJMS’ OK

Padding Oracles

Example

m1l -> @x 00 02 4A 20 FA BC ..

m2 -> 0x 05 FF 62 63 04 05 ..

Padding Oracles

Example /

ml -> 0x |60 02 |4A 20 FA BC ..

m2 -> 0x |85 FF |62 63 04 05 ..

N

Padding WRONG

Padding Oracles

global D, N

encrypted_msg
raw decrypt

decrypted_hex

else:

def oracle(msg_hex):

transform hex

into number
int("6x" + msg_hex, 0)

using RSA

return True

decrypted_msg = pow(encrypted_msg, D, N)

In code

"%0{PADDING_VALUE}x" % decrypted_msg

check for padding
if decrypted_hex[0:4] !=
return False

'0002" :

Padding Oracles

Padding is checked on plaintexi!

encrypted message — padded message

— plaintext message

0x04 - Details

On Teaching - Details

Abstractions

Details

Engine (Exploded View)

Distributor Cylinder Head Cover

Distributor.
O-ring
Cylinder Head Cover Gasket

Cylinder

Head
Manifold

Camshaft
Pulley |htake Manifold
Gasket

@ﬁﬁlter
Water Pump

Water Pump Gasket

Exhaust
Manifold

Engine Block
Exhaust Manifold

Timing Belt

Drive Pulley

Gasket Oil Pan

Qil Pan
Gasket

Drain Bolt /$

Crush Washer 0il Pan
Drain Bolt

Inputs

e RSA Public Key of Server
e Encrypted message
e Exposed PKCS Oracle

Output

e Decrypted message

Objective

Find the original message m.

c — PKCS(m) — m

Consequences of
RSA

Consequences of RSA

The laws of exponents in algebra states that

a®- b= (a-b)°

Consequences of RSA

In RSA encryption is implemented with
exponentiation.

c=m" mod N

Attacker PoV Server PoV

C

Attacker PoV Server PoV
C — T

Attacker PoV Server PoV
C — T

Attacker PoV Server PoV
C — T

i

sC-c— S -m

Attacker PoV Server PoV
C — T

I

S «-Cc—» S T

Consequences of
PKCS#1 v1.5

Consequences of PKCS #1 v1.5

Remember the rules of PKCS #1 v1.5

Consequences of PKCS #1 v1.5

Remember the rules of PKCS #1 v1.5

Valid messages start with 0x 00 02!

Consequences of PKCS #1 v1.5

Ox 00 02 00 00 00 00 ..

m -> OBx 00 02 062 03 04 05 ..

Ox 06 62 FF FF FF FF ..

Consequences of PKCS #1 v1.5

If mis properly padded,
we have a numerical bound on the plaintexi!

2B<m<3B —1

KEY_BIT_SIZE = 1024
B = 2 %% (8 * (KEY_BYTE_SIZE - 2))
B2, B3 = 2%B, 3*B

Consequences of PKCS #1 v1.5

If mis properly padded,
we have a numerical bound on the plaintexi!

aB 3B -1
(())

| ~

M

Consequences of PKCS #1 v1.5
Before knowledge of valid PKCS padding

O(\M/]N

After knowledge of valid PKCS padding

2B 3B -1
(())

° ~

M

Decryption Algorithm

Decryption Algorithm

The decryption algorithm works in phases.

Each phase
computes a set of intervals
that contain the plaintexi.

Decryption Algorithm

Phase O

3B -1

Decryption Algorithm

In the last phase we have a single valid
interval that contains a single number.

2B 3B -1
[(L N S)

: i A,

WA

This remaining number is the decrypted plaintexi!

Decryption Algorithm

Each phase has two steps

e Step 1: Find a number

o Step 2: Construct a set of infervals

Decryption Algorithm - Initialization

Initialization

Sog = 2
My=1{ [2B,3B]| }

Decryption Algorithm - Step 1

The first step finds a value such that

s;-m mod NV

IS PKCS#1 v1.5 compliant.

Decryption Algorithm - Step 1

The attacker sends the modified ciphertext

s ¢c mod N

The server will decrypt and check the padding
m-s mod N

Decryption Algorithm - Step 1

s=2
2 2
= WRONG PADDING!
) <
' s=3
Client P Server
98 WRONG PADDING! I8
<
s=4
>

& GOOD PADDING! <&

Decryption Algorithm - Step 1
Client s ¢c modN]
|

v
Server M - S mod N

N

Padding OK Padding WRONG ——

l

Step 2

s=s5+1

Decryption Algorithm - Step 1

def bb_step_1(s):

global E, N, c

S =s + 1

while True:
new_c = (s®E * c¢) mod N
if oracle(new_c):

return s

S = s + 1

Decryption Algorithm - Step 2

The second step constructs a set of intervals
that includes the original plaintext.

a,bl € M; : m € |a,D]

Decryption Algorithm - Step 2

Formulas are formal, but not intuitive.

i {252 oo 2222)}

for all [a,b] € M;_; and Bs—id 1 LX<
n

bS,; — 2B

n

Decryption Algorithm - Phase 2

Images can help

Phase 1
aB 3B -1

(()) L J N

Decryption Algorithm - Step 2

Phase O

2B 3B -1

(()

Decryption Algorithm - Step 2

def bb_step_2(s, old_M):
new_M = set([])
for (a, b) in old_M:
ri = ceil((a * s - B3 + 1), N)
r2 = floor((b * s - B2), N) + 1
for r in range(r1, r2):
aa = ceil(B2 + r*N, s)
bb = floor(B3 - 1 + r*N, s)
newa = max(a, aa)
newb = min(b, bb)
if newa <= newb:
new_M |= set([(newa, newb)])
return new_M

Decryption Algorithm - Full Code

Initialization

s = ceil(N, B3)

- Search for next s_i
\I:qvh:lt.lze'?ilge (B2 05 =) 1) (non-optimized)
if len(M) > 1 or TOTAL_REQUESTS Ehbcicior
s = bleichenbacher_step_1(s) termination

else:
interval = M.pop()
if interval[@] == interval[l]:

print(f"Found result: {interval([@]}")
break
o LE Search for next s_i
M.add(intexrval) e’ =
s = bleichenbacher opt 1(s, M) o AdpEmieed)
|[M = bleichenbacher_step_2(s, M) |

1l
S

Compute new set
of intervals M_i

Decryption Algorithm

The bottleneck is in the phase 1.

s=2
.
|
< 8 WRONG PADDING! 8
~ s=3 >
|
. < 8 WRONG PADDING! 8
Client —
s=4 Server

>

- ¢ GOOD PADDING! ¢

Decryption Algorithm

How many phases?

22U ~ 10°

Decryption Algorithm

Over the years,
optimizations techniques were discovered.

Tiger Bounds

Beta Method

Parallel Threads Methods
Skipping Holes

Trimmers

Decryption Algorithm
What | did not cover (for time):

e Blinding step
e Optimized search for next s
° ...

0x05 - Practice

Practice

Develop a safe
environment
to fry the ideas
of the lecture
against reality.

Practice Reality is Brutal.

*but rewarding (someimes)

Practice

Host: bb.esadecimale.it
Port: 1337/
Description: Ask, and | shall answer.

nc bb.esadecimale.it 1337

Practice

CVE-2016-0704,
CVE-2016-0800
CVE-2017-6168,
CVE-2017-17305
CVE-2018-16868
CVE-2019-1563
CVE-2023-46809

0x06 - Takeaways

Takeways

DO NOT USE RSA WITH PKCS#1 V1.5!

If you want to learn applied crypto

e hitps://cryptohack.org/
e htps://cryptopals.com/

CRYPTOHACK

A free, fun platform for learning modern cryptography

the cryptopals crypto challenges

Set 1: Basics

Welcome to the challenges

Set 2: Block
We can't introduce these any better than Maciej Ceglowski did, so read that blog post first.

crypto
We've built a collection of exercises that demonstrate attacks on real-world crypto.

OxFF - References

Research Literature

Original Bleichenbacher (CRYPTO 1998)

Klima et al. (CHES 2003)

Bleichenbacher’s Attack Strikes Again: Breaking PKCS#1 v1.5 in XML Encryption (ESORICS 2012)
Efficient Padding Oracle Attacks on Cryptographic Hardware (CRYPTO 2012)

Revisiting SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks (USENIX 2014)
Return Of Bleichenbacher's Oracle Threat (USENIX 2018)

The Dangers of Key Reuse: Practical Attacks on IPsec IKE (USENIX 2018)

The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations (2019)

Marvin Attack (Timing sidechannels 2023)

References

e Platforms
o https://cryptohack.org/
o https://cryptopals.com/

e Tooling
o https://testssl.sh/
o https://github.com/tlsfuzzer/tisfuzzer
o https://github.com/tls-attacker/TLS-Attacker
e Reading
o https://blog.leonardotamiano.xyz/tech/bleichenbacher-oracle/
o https://leonardotamiano.xyz/thesis.pdf
o https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/
appliedcrypto/education/theses/bachelors-thesis_livia-capol.pdf

forum.esadecimale.it

